Respuesta :
Answer:
The ranger should walk 0.577 miles per hour in order to decrease the time required to reach the car.
Step-by-step explanation:
Suppose the ranger reaches x miles from the end of the road which becomes the horizontal distance and the vertical distance is 1 miles. A right angle triangle can be obtained that shows the ranger walks along the hypothesis.
[tex]\text {Hypothesis}=\sqrt{x^{2}+1}[/tex]
The distance left to reach the car is = 5 - x
[tex]\text { Distance }(\mathrm{D})=\text { speed }(\mathrm{s}) \times \text { time }(\mathrm{t})[/tex]
[tex]\text { time }=\frac{\text {distance}}{\text {speed}}[/tex]
To calculate total time taken, then the function becomes
[tex]T(x)=\frac{\sqrt{x^{2}+1}}{2}+\frac{(5-x)}{4}[/tex]
In order to find the minimized time, differentiate the function T as follows
[tex]\frac{d}{d x T(x)}=\frac{d}{d x}\left(\left(\frac{\sqrt{x^{2}+1}}{2}\right)+\left(\frac{(5-x)}{4}\right)\right)[/tex]
[tex]\frac{d}{d x T(x)}=\frac{1}{2}\left(\frac{2 x}{2 \sqrt{x^{2}+1}}\right)+\left(\frac{-1}{4}\right)[/tex]
[tex]\frac{d}{d x T(x)}=\frac{x}{2 \sqrt{x^{2}+1}}-\frac{1}{4}[/tex]
Equate the derivative to zero and obtained
[tex]\frac{x}{2 \sqrt{x^{2}+1}}-\frac{1}{4}=0[/tex]
[tex]\frac{x}{2 \sqrt{x^{2}+1}}=\frac{1}{4}[/tex]
[tex]\frac{x}{\sqrt{x^{2}+1}}=\frac{2}{4}[/tex]
[tex]\frac{x}{\sqrt{x^{2}+1}}=\frac{1}{2}[/tex]
Squaring both sides
[tex]\frac{x^{2}}{x^{2}+1}=\frac{1}{4}[/tex]
[tex]4 x^{2}=x^{2}+1[/tex]
[tex]4 x^{2}-x^{2}=1[/tex]
[tex]3 x^{2}=1[/tex]
[tex]x^{2}=\frac{1}{3}[/tex]
[tex]x=\sqrt{\frac{1}{3}}[/tex]
The ranger should walk 0.577 miles per hour in order to decrease the time required to reach the car.