Answer:
[tex]\sin(\theta)=0.47[/tex] and [tex]\cos(\theta)=0.88[/tex].
Step-by-step explanation:
Given:
Angle lies in first quadrant.
[tex]\tan\theta=\frac{8}{15}[/tex]
Since, [tex]\tan\theta=\frac{\cos(\theta}{\sin(\theta)}[/tex] this does not mean that [tex]\sin(\theta)=8[/tex] and [tex]\cos(\theta)=15[/tex], because it is the ratio of the [tex]\sin(\theta)[/tex] and [tex]\cos(\theta)[/tex] which is not necessarily the exact values of them. And also [tex]\sin(\theta)[/tex] and [tex]\cos(\theta)[/tex] values lie between [tex]-1 \ to\ 1[/tex] and so it cannot be [tex]=8\ or\ 15[/tex].
In order to find the exact values, we need to find the exact angle.
[tex]\tan\theta=\frac{8}{15}[/tex]
So,
[tex]\theta=\tan^{-1}(\frac{8}{15})[/tex]
[tex]\theta= 28.07\°[/tex] As the angle lies in 1st quadrant.
Using the angle [tex]\theta[/tex] we can find the exact values for [tex]\sin(\theta)[/tex] and [tex]\cos(\theta)[/tex].
[tex]sin(28.07\°)=0.47[/tex]
[tex]cos(28.07\°)=0.88[/tex]