The angle θ is in the first quadrant of the unit circle and tan(θ)= [tex]\frac{8}{15}[/tex] .Since tan(θ)=[tex]\frac{sin(θ)}{cos(θ)}[/tex] , does this mean that sin(θ)=8 and cos(θ)=15? If not, clearly explain and give the exact values of sin(θ) and cos(θ).

Respuesta :

Answer:

[tex]\sin(\theta)=0.47[/tex] and [tex]\cos(\theta)=0.88[/tex].

Step-by-step explanation:

Given:

Angle lies in first quadrant.

[tex]\tan\theta=\frac{8}{15}[/tex]

Since, [tex]\tan\theta=\frac{\cos(\theta}{\sin(\theta)}[/tex] this does not mean that [tex]\sin(\theta)=8[/tex] and  [tex]\cos(\theta)=15[/tex], because it is the ratio of the [tex]\sin(\theta)[/tex] and [tex]\cos(\theta)[/tex] which is not necessarily the exact values of them. And also [tex]\sin(\theta)[/tex] and [tex]\cos(\theta)[/tex] values lie between [tex]-1 \ to\ 1[/tex] and so it cannot be [tex]=8\ or\ 15[/tex].

In order to find the exact values, we need to find the exact angle.

[tex]\tan\theta=\frac{8}{15}[/tex]

So,

[tex]\theta=\tan^{-1}(\frac{8}{15})[/tex]

[tex]\theta= 28.07\°[/tex]   As the angle lies in 1st quadrant.

Using the angle [tex]\theta[/tex] we can find the exact values for [tex]\sin(\theta)[/tex] and [tex]\cos(\theta)[/tex].

[tex]sin(28.07\°)=0.47[/tex]

[tex]cos(28.07\°)=0.88[/tex]