Respuesta :

Answer:

The required verification is given below.

Step-by-step explanation:

To verify: [tex]\frac{\cos (x-y)}{\sin (x+y)}=\frac{1 + \cot x\cot y}{\cot x + \cot y}[/tex]

Consider,

Left hand side = [tex]\frac{\cos (x-y)}{\sin (x+y)}[/tex]

Now by using Trigonometric identities,

[tex]cos (A-B) = sin A.sin B + cos A.cos B \\sin (A+B) = sin A.cos B + cos A.sin B [/tex]

Now we get,

Left hand side = [tex]\frac{\sin x\sin y + \cos x\cos y}{\sin x\cos y+\cos x\sin y}[/tex]

Now dividing Numerator and Denominator by [tex]sin x.sin y[/tex] we get

Left hand side = [tex]\frac{1 +\frac{\cos x\cos y}{\sin x\sin y} }{\frac{\sin x\cos y+\cos x\sin y}{\sin x\sin y } }[/tex]

Now we have identity

[tex]cot x = \frac{\cos x}{\sin x}[/tex]

and [tex]cot y =\frac{\cos y}{\sin y}[/tex] then

Left hand side = [tex]\frac{1 +\cot x\cot y}{\cot x + \cot y}[/tex]

Which is equal to our Right hand side required identity

This is the way we have

Left hand side = Right hand side   Proved.

ACCESS MORE