Answer:
The required verification is given below.
Step-by-step explanation:
To verify: [tex]\frac{\cos (x-y)}{\sin (x+y)}=\frac{1 + \cot x\cot y}{\cot x + \cot y}[/tex]
Consider,
Left hand side = [tex]\frac{\cos (x-y)}{\sin (x+y)}[/tex]
Now by using Trigonometric identities,
[tex]cos (A-B) = sin A.sin B + cos A.cos B \\sin (A+B) = sin A.cos B + cos A.sin B [/tex]
Now we get,
Left hand side = [tex]\frac{\sin x\sin y + \cos x\cos y}{\sin x\cos y+\cos x\sin y}[/tex]
Now dividing Numerator and Denominator by [tex]sin x.sin y[/tex] we get
Left hand side = [tex]\frac{1 +\frac{\cos x\cos y}{\sin x\sin y} }{\frac{\sin x\cos y+\cos x\sin y}{\sin x\sin y } }[/tex]
Now we have identity
[tex]cot x = \frac{\cos x}{\sin x}[/tex]
and [tex]cot y =\frac{\cos y}{\sin y}[/tex] then
Left hand side = [tex]\frac{1 +\cot x\cot y}{\cot x + \cot y}[/tex]
Which is equal to our Right hand side required identity
This is the way we have
Left hand side = Right hand side Proved.