Answer:
The standard deviation [tex]\simeq 1.63[/tex]
Step-by-step explanation:
Here, 6 values are given. Let the variable be X
Let, the values be [tex]x_{i}[/tex] where, i = 1(1)6
or i = 1 , 2, 3, 4, 5, 6 .
Here, the arithmetic mean is,
[tex]\frac {\sum_{i = 1}^{6}x_{i}}{6}[/tex]
= ( 6 + 6 + 10 + 8 + 10 + 8)/6
= 8
Now,
[tex]\frac {\sum_{i = 1}^{6}({x_{i}}^{2})}{6}[/tex]
= ( 36 + 36 + 100 + 64 + 100 + 64)/6
[tex]\simeq 66.67[/tex]
so, variance of X
[tex]\simeq 66.67 - 8^{2}[/tex]
= 2.67
so, standard deviation of X,
[tex]\simeq {\sqrt {2.67}}[/tex]
[tex]\simeq 1.634[/tex]
Hence, here, the answer is, 1.63 .