Answer:
The centripetal force acting on the child is 39400.56 N.
Explanation:
Given:
Mass of the child is, [tex]m=40\ kg[/tex]
Radius of the barrel is, [tex]R=2.90\ m[/tex]
Number of revolutions are, [tex]n =10[/tex]
Time taken for 10 revolutions is, [tex]t=29.3\ s[/tex]
Therefore, the time period of the child is given as:
[tex]T=\frac{n}{t}=\frac{10}{29.3}=0.341\ s[/tex]
Now, angular velocity is related to time period as:
[tex]\omega=\frac{2\pi}{T}=\frac{2\pi}{0.341}=18.43\ rad/s[/tex]
Now, centripetal force acting on the child is given as:
[tex]F_{c}=m\omega^2 R\\F_{c}=40\times (18.43)^2\times 2.90\\F_{c}=40\times 339.66\times 2.90\\F_{c}=39400.56\ N[/tex]
Therefore, the centripetal force acting on the child is 39400.56 N.