Answer:
The value of angle A is 43° and
The value of angle B is 2° .
Step-by-step explanation:
Given as :
A - B = 41° .....1
And , tan A + tan B + tan A tan B = 1
Or, tan A + tan B = 1 - tan A tan B ....2
∵ tan ( A + B ) = [tex]\frac{tan A + tan B}{1 - tan A tan B}[/tex]
Or, tan ( A + B ) = [tex]\frac{1 - tanAtanB}{1 - tanAtanB}[/tex] (from eq 2)
∴ tan ( A + B ) = 1
A + B = [tex]tan^{-1}1[/tex]
I.e A + B = 45° ........3
Now, from eq 1 and eq 3
A - B = 41°
A + B = 45°
Or, ( A - B ) + ( A + B ) = 41° + 45°
Or, 2 A = 86°
∴ A = [tex]\frac{86}{2}[/tex] = 43°
Now, putting the value of angle A in eq 1
I.e A - B = 41°
Or, B = 43° - 41° = 2°
Hence The value of angle A is 43° and The value of angle B is 2° . Answer