Answer:
The speed of the current is 2 miles per hours
Step-by-step explanation:
Given as :
The speed of motorboat = x = 15 miles per hour
The time taken by motorboat trip upstream = 51 minutes
The time taken by motorboat trip downstream = 39 minutes
Let The speed of the current = y miles per hour
Let The total distance cover = A miles
So ,
Speed = [tex]\dfrac{\textrm Distance}{\textrm Time}[/tex]
So, x - y = [tex]\dfrac{A}{51}[/tex]
I.e 15 - y = [tex]\dfrac{A}{51}[/tex]
And x + y = [tex]\dfrac{A}{39}[/tex]
I.e 15 + y = [tex]\dfrac{A}{39}[/tex]
[tex]\dfrac{x-y}{x+y}[/tex] = [tex]\dfrac{39}{51}[/tex]
I.e [tex]\dfrac{x-y}{x+y}[/tex] = [tex]\dfrac{13}{17}[/tex]
Or, 17 × (x - y) = 13 × (x + y)
Or, 17 x - 17 y = 13 x + 13 y
Or, 17 x - 13 x = 13 y + 17 y
Or, 4 x = 30 y
Now, ∵ x = 15 miles per hour
So, 4 × 15 = 30 y
Or, y = [tex]\dfrac{60}{30}[/tex]
∴ y = 2 miles per hour
Hence The speed of the current is 2 miles per hours Answer