14, 16, and 20 using elimination method showing work. Thanks so much
![14 16 and 20 using elimination method showing work Thanks so much class=](https://us-static.z-dn.net/files/d9b/4039774084e66b2a7b291e6fe93d55bf.png)
14) x=0, y=3, z=-2
Solution Set (0,3,-2)
16) x=1, y=1 and z=1
Solution set = (1,1,1)
20) x = -263/31, y=164/31 ,z=122/31
Solution set (-263/31, 164/31 ,122/31)
Step-by-step explanation:
14)
[tex]x-y+2z=-7\\y+z=1\\x=2y+3z[/tex]
Rearranging and solving:
[tex]x-y+2z=-7\,\,\,eq(1)\\y+z=1\,\,\,eq(2)\\x-2y-3z=0\,\,\,eq(3)[/tex]
Eliminate y:
Adding eq(1) and eq(2)
[tex]x-y+2z=-7\,\,\,eq(1)\\ 0x+y+z=1\,\,\,eq(2)\\-------\\x+3z=-6\,\,\,eq(4)[/tex]
Multiply eq(2) with 2 and add with eq(3)
[tex]0x+2y+2z=2\,\,\,eq(2)\\\\x-2y-3z=0\,\,\,eq(3)\\--------\\x-z=2\,\,\,eq(5)[/tex]
Eliminate x:
Subtract eq(4) and eq(5)
[tex]x+3z=-6\,\,\,eq(4)\\x-z=2\,\,\,eq(5)\\-\,\,\,+\,\,\,\,\,\,-\\---------\\4z=-8\\z= -2[/tex]
So, value of z = -2
Now putting value of z in eq(2)
[tex]y+z=1\\y+(-2)=1\\y-2=1\\y=1+2\\y=3[/tex]
So, value of y = 3
Now, putting value of z and y in eq(1)
[tex]x-y+2z=-7\\x-(3)+2(-2)=-7\\x-3-4=-7\\x-7=-7\\x=-7+7\\x=0[/tex]
So, value of x = 0
So, x=0, y=3, z=-2
S.S(0,3,-2)
16)
[tex]3x-y+z=3\\\x+y+2z=4\\x+2y+z=4[/tex]
Let:
[tex]3x-y+z=3\,\,\,eq(1)\\x+y+2z=4\,\,\,eq(2)\\x+2y+z=4\,\,\,eq(3)[/tex]
Eliminating y:
Adding eq(1) and (2)
[tex]3x-y+z=3\,\,\,eq(1)\\x+y+2z=4\,\,\,eq(2)\\---------\\4x+3z=7\,\,\,eq(4)[/tex]
Multiply eq(1) by 2 and add with eq(3)
[tex]6x-2y+2z=6\,\,\,eq(1)\\x+2y+z=4\,\,\,eq(3)\\---------\\7x+3z=10\,\,\,eq(5)[/tex]
Now eliminating z in eq(4) and eq(5) to find value of x
Subtracting eq(4) and eq(5)
[tex]4x+3z=7\,\,\,eq(4)\\7x+3z=10\,\,\,eq(5)\\-\,\,\,-\,\,\,\,\,\,\,\,\,\,-\\-----------\\-3x=-3\\x=-3/-3\\x=1[/tex]
So, value of x = 1
Putting value of x in eq(4) to find value of x:
[tex]4x+3z=7\\4(1)+3z=7\\4+3z=7\\3z=7-4\\z=3/3\\z=1[/tex]
So, value of z = 1
Putting value of x and z in eq(2) to find value of y:
[tex]x+y+2z=4\\1+y+2(1)=4\\1+y+2=4\\y+3=4\\y=4-3\\y=1[/tex]
So, x=1, y=1 and z=1
Solution set = (1,1,1)
20)
[tex]x+4y-5z=-7\\3x+2y+2z=-7\\2x+y+5z=8[/tex]
Let:
[tex]x+4y-5z=-7\,\,\,eq(1)\\3x+2y+2z=-7\,\,\,eq(2)\\2x+y+5z=8\,\,\,eq(3)[/tex]
Solving:
Eliminating z :
Adding eq(1) and eq(3)
[tex]x+4y-5z=-7\,\,\,eq(1)\\2x+y+5z=8\,\,\,eq(3)\\---------\\3x+5y=1\,\,\,eq(4)[/tex]
Multiply eq(1) with 2 and eq(2) with 5 and add:
[tex]2x+8y-10z=-14\,\,\,eq(1)\\15x+10y+10z=-35\,\,\,eq(2)\\----------\\17x+18y=-49\,\,\,eq(5)[/tex]
Eliminate y:
Multiply eq(4) with 18 and eq(5) with 5 and subtract:
[tex]54x+90y=18\\85x+90y=-245\\-\,\,\,-\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+\\-------\\-31x=158\\x=-\frac{263}{31}[/tex]
So, value of x = -263/31
Putting value of x in eq(4)
[tex]3x+5y=1\\3(-\frac{263}{31})+5y=1\\-\frac{789}{31}+5y=1 \\5y=1+\frac{789}{31}\\5y=\frac{820}{31}\\y=\frac{820}{31*5}\\y=\frac{164}{31}[/tex]
Now putting x = -263/31 and y=164/31 in eq(1) and finding z:
We get z=122/31
So, x = -263/31, y=164/31 ,z=122/31
Solution set (-263/31, 164/31 ,122/31)
Keywords: Solving system of Equations
Learn more about Solving system of Equations at:
#learnwithBrainly