Answer:
[tex]\frac{7}6}[/tex]
Step-by-step explanation:
Let the 3 numbers be [tex]x,y,[/tex] and [tex]z[/tex]
As per question,
[tex]x+y+z=145[/tex]
Also, 7 times the second number is twice the first, so
[tex]7y=2x\\\frac{x}{y}=\frac{7}{2}----------- 1[/tex]
Again, twice the second number is 6 times the third number, so
[tex]2y=6z\\\frac{2}{6}=\frac{z}{y}\\\frac{z}{y}=\frac{1}{3}---------- 2[/tex]
Now, multiply equations 1 and 2. This gives,
[tex]\frac{x}{y}\times \frac{z}{y}=\frac{7}{2}\times \frac{1}{3}\\\frac{x\times z}{y\times y}=\frac{7\times 1}{2\times 3}\\\frac{xz}{y^2}=\frac{7}{6}[/tex]
Therefore, the ratio of the product of the first and the third numbers to the square of the second number is [tex]\frac{7}6}[/tex]