Respuesta :

Answer:

The point that divides the line AB in the ration 2 : 1 is [tex]C(-2,2)[/tex]

Step-by-step explanation:

Given:

Point [tex]A(-8, 4)[/tex] and point [tex]B(10, -2)[/tex]

Point [tex]C(x,y)[/tex] lies in between of AB such that [tex]AC : CB = 2 : 1[/tex]

Using section formula which says that, when a point P divided a line AB in the ratio [tex]m : n[/tex], then the co-ordinates of the point P are:

[tex]x=\frac{mx_2+nx_1}{m+n}\\y=\frac{my_2+ny_1}{m+n}[/tex]

Here, [tex](x_1,y_1)=(-8,4),(x_2,y_2)=(10,-2),m=2,n=1[/tex]

Therefore, the [tex]x[/tex] and [tex]y[/tex] values of point C are:

[tex]x=\frac{1\times 10+2\times -8}{2+1}=\frac{10-16}{3}=\frac{-6}{3}=-2\\y=\frac{1\times -2+2\times 4}{2+1}=\frac{-2+8}{3}=\frac{6}{3}=2[/tex]

Therefore, the point that divides the line AB in the ration 2 : 1 is [tex]C(-2,2)[/tex]

ACCESS MORE