again i hope you can see the picture if you can’t let me know but if you can please help!
![again i hope you can see the picture if you cant let me know but if you can please help class=](https://us-static.z-dn.net/files/d06/db9047fb838d56ce89a11fa5a65c10c2.png)
Answer:
The point that divides the line AB in the ration 2 : 1 is [tex]C(-2,2)[/tex]
Step-by-step explanation:
Given:
Point [tex]A(-8, 4)[/tex] and point [tex]B(10, -2)[/tex]
Point [tex]C(x,y)[/tex] lies in between of AB such that [tex]AC : CB = 2 : 1[/tex]
Using section formula which says that, when a point P divided a line AB in the ratio [tex]m : n[/tex], then the co-ordinates of the point P are:
[tex]x=\frac{mx_2+nx_1}{m+n}\\y=\frac{my_2+ny_1}{m+n}[/tex]
Here, [tex](x_1,y_1)=(-8,4),(x_2,y_2)=(10,-2),m=2,n=1[/tex]
Therefore, the [tex]x[/tex] and [tex]y[/tex] values of point C are:
[tex]x=\frac{1\times 10+2\times -8}{2+1}=\frac{10-16}{3}=\frac{-6}{3}=-2\\y=\frac{1\times -2+2\times 4}{2+1}=\frac{-2+8}{3}=\frac{6}{3}=2[/tex]
Therefore, the point that divides the line AB in the ration 2 : 1 is [tex]C(-2,2)[/tex]