Respuesta :

Answer:

Length of the rectangle is 15.0325 km and width is 0.3765 km.

Explanation:

Given:

Perimeter of a rectangle = 30.8 km

Length of diagonal of rectangle = 11 km

To find:

The length and width of rectangle=?

Solution:

Lets assume length of the rectangle = x km

And assume width of the rectangle = y km

Lets first create equation using given  perimeter

perimeter of rectangle = 2 ( length +  width )

=> 30.8 km = 2 ( x + y )  

=>[tex]x + y = \frac{30.8}{2}[/tex]

=> y = 15.4 – x             ------(1)

As diagonal and two sides of rectangle forms right angle triangle whose hypoteneus is diagonal ,  

=> [tex]length^2 + width^2 = diagonal^2[/tex]

=> [tex]x^2 + y^2 = 11^2[/tex]

=> [tex]x^2 + y^2 = 121[/tex]

On substituting value of y from (1) in above equation we get

=> [tex]x^2 + (15.4-x)^2 = 121[/tex]

=>[tex]x^2 + (15.4)^2 + x^2 – 2 x 15.4 \times x   = 121[/tex]

=> [tex]2x^2-30.8x + 237.16 -121  = 0[/tex]

=> [tex]2x^2-30.8x + 116.16 = 0[/tex]

Solving above quadratic equation using quadratic formula

General form of quadratic equation is  

[tex]ax^2 +bx +c = 0[/tex]

And quadratic formula for getting roots of quadratic equation is  

[tex]x= \frac{ -b\pm\sqrt{(b^2-4ac)}}{2a}[/tex]

As equation is [tex]2x^2-30.8x + 116.16 = 0[/tex], in our case

a = 2 ,  b = -30.8 and c = 116.16

Calculating roots of the equation we get

[tex]x=\frac{ -(-30.8)\pm\sqrt{(-30.8)^2-4(2)( 11)} } {(2\times2)}[/tex]

[tex]x=\frac{30.8\pm\sqrt{(948.64-88)}}{4}[/tex]

[tex]x=\frac{30.8\pm\sqrt{860.64}}{4}[/tex]

[tex]x=\frac{30.8\pm\sqrt{860.64}}{4}[/tex]

[tex]x=\frac{(30.8\pm29.33)}4[/tex]

[tex]x=\frac{(30.8+29.33)}{4}[/tex]

[tex]x=\frac{(30.8-29.33)}{4}[/tex]

=> x = 15.0325 or x = 0.3675

As generally length is longer one ,  

So x = 1.0325

From equation (1) y = 15.4 – x = 0.3765

Hence length of the rectangle is 15.0325 km and width is 0.3765 km.

ACCESS MORE