Respuesta :
Answer:
Length of the rectangle is 15.0325 km and width is 0.3765 km.
Explanation:
Given:
Perimeter of a rectangle = 30.8 km
Length of diagonal of rectangle = 11 km
To find:
The length and width of rectangle=?
Solution:
Lets assume length of the rectangle = x km
And assume width of the rectangle = y km
Lets first create equation using given perimeter
perimeter of rectangle = 2 ( length + width )
=> 30.8 km = 2 ( x + y )
=>[tex]x + y = \frac{30.8}{2}[/tex]
=> y = 15.4 – x ------(1)
As diagonal and two sides of rectangle forms right angle triangle whose hypoteneus is diagonal ,
=> [tex]length^2 + width^2 = diagonal^2[/tex]
=> [tex]x^2 + y^2 = 11^2[/tex]
=> [tex]x^2 + y^2 = 121[/tex]
On substituting value of y from (1) in above equation we get
=> [tex]x^2 + (15.4-x)^2 = 121[/tex]
=>[tex]x^2 + (15.4)^2 + x^2 – 2 x 15.4 \times x = 121[/tex]
=> [tex]2x^2-30.8x + 237.16 -121 = 0[/tex]
=> [tex]2x^2-30.8x + 116.16 = 0[/tex]
Solving above quadratic equation using quadratic formula
General form of quadratic equation is
[tex]ax^2 +bx +c = 0[/tex]
And quadratic formula for getting roots of quadratic equation is
[tex]x= \frac{ -b\pm\sqrt{(b^2-4ac)}}{2a}[/tex]
As equation is [tex]2x^2-30.8x + 116.16 = 0[/tex], in our case
a = 2 , b = -30.8 and c = 116.16
Calculating roots of the equation we get
[tex]x=\frac{ -(-30.8)\pm\sqrt{(-30.8)^2-4(2)( 11)} } {(2\times2)}[/tex]
[tex]x=\frac{30.8\pm\sqrt{(948.64-88)}}{4}[/tex]
[tex]x=\frac{30.8\pm\sqrt{860.64}}{4}[/tex]
[tex]x=\frac{30.8\pm\sqrt{860.64}}{4}[/tex]
[tex]x=\frac{(30.8\pm29.33)}4[/tex]
[tex]x=\frac{(30.8+29.33)}{4}[/tex]
[tex]x=\frac{(30.8-29.33)}{4}[/tex]
=> x = 15.0325 or x = 0.3675
As generally length is longer one ,
So x = 1.0325
From equation (1) y = 15.4 – x = 0.3765
Hence length of the rectangle is 15.0325 km and width is 0.3765 km.