Respuesta :

Answer:

The graph in the attached figure

Step-by-step explanation:

we have

[tex]f(x)=\frac{9x^{2}-36}{3x+6}[/tex]

Remember that the denominator cannot be equal to zero

so

The value of x cannot be equal to x=-2

Simplify the numerator

[tex]9x^{2}-36=(3x+6)(3x-6)[/tex] ----> by difference of squares

substitute

[tex]f(x)=\frac{(3x+6)(3x-6)}{3x+6}[/tex]

simplify

[tex]f(x)=3x-6[/tex]

The domain is all real numbers except the value of x=-2

The y-intercept is the point (0,-6) ---> value of y when the value of x is equal to zero)

The x-intercept is the point (2,0) ---> value of x when the value of y is equal to zero)

therefore

The graph in the attached figure

Ver imagen calculista