Answer:
[tex]\cos( \theta) = - 0.5[/tex]
Step-by-step explanation:
It was given that sin θ ≈ −0.866.
To find cosθ, we apply the Pythagorean property;
[tex] \cos^{2} ( \theta) + \sin^{2} ( \theta) = 1[/tex]
[tex] \implies \cos^{2} ( \theta) = 1 - \sin^{2} ( \theta)[/tex]
We substitute the given value to get:
[tex] \cos^{2} ( \theta) = 1 -(0.866)^{2} [/tex]
[tex]\cos^{2} ( \theta) = 0.250[/tex]
Take square root of both sides:
[tex]\cos( \theta) = \pm \sqrt{0.250} [/tex]
[tex]\cos( \theta) = \pm0.5[/tex]
But we were given that:
[tex] \pi \leqslant \theta \: \leqslant \frac{3 \pi}{2} [/tex]
which is the third quadrant and we know the cosine function is negative in this quadrant.
Hence
[tex]\cos( \theta)= - 0.5[/tex]