Respuesta :

Answer:

The simplified form of the given expression is [tex]10x^2 + 28x + 15[/tex]

Step-by-step explanation:

Here, the given expression is: [tex](2x^2+3)(4x+5)-8x(x^2-2)[/tex]

By Distributive Property:

A(B+C) = AB  + AC

Now, expanding the given expression.

We get : [tex](2x^2+3)(4x+5)-8x(x^2-2)  = 2x^2(4x+5)  + 3(4x+5)- 8x(x^2) + 8x(2)\\=2x^2(4x) + 2x^2(5)  + 3(4x) + 3(5)  - 8x^3 +16x\\=8x^3 + 10x^2 + 12x + 15 - 8x^3 + 16x\\=10x^2 + 28x + 15[/tex]

Hence, the simplified form of the given expression is [tex]10x^2 + 28x + 15[/tex]