Respuesta :

Answer:

n = - 3 and k = 100

Step-by-step explanation:

We are given that [tex]z = \frac{k}{x^{n} }[/tex] ......... (1) and we have to find k and n which are constants.

Now, from equation (1), we can write

[tex]\frac{z_{1} }{z_{2} } = \frac{\frac{k}{x_{1} ^{n} } }{\frac{k}{x_{2} ^{n} }}[/tex]

⇒ [tex]\frac{z_{1} }{z_{2} } = (\frac{x_{2} }{x_{1} } )^{n}[/tex]

Now, for z = 100, x =1 and for z = 25/2, x = 2

Hence, [tex]\frac{100}{\frac{25}{2} } = (\frac{1}{2} )^{n} = 2^{-n}[/tex]

⇒ [tex]2^{3} = 2^{-n}[/tex]

n = - 3

Now, from equation (1) we get

[tex]z_{1} = \frac{k}{x_{1} ^{-3} }[/tex]

⇒ [tex]100 = \frac{k}{1} = k[/tex]

k = 100 {Since, x = 1, when z = 100}

Therefore, n = - 3 and k = 100 (Answer)