Respuesta :

Answer:

[tex]A=37.5\ units^2[/tex]

Step-by-step explanation:

we know that

The area of a trapezoid is equal to

[tex]A=\frac{1}{2}[b1+b2]h[/tex]

where

b1 and b2 are the parallel bases

h is the height of trapezoid (perpendicular distance between the two parallel bases)

In this problem the area is equal to

[tex]A=\frac{1}{2}[BC+AD]AB[/tex]

we have the coordinates

[tex]A(-3,2),B(1,5),C(7,-3),D(0,-2)[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

[tex]A(-3,2),B(1,5[/tex]

substitute in the formula

[tex]d=\sqrt{(5-2)^{2}+(1+3)^{2}}[/tex]

[tex]d=\sqrt{(3)^{2}+(4)^{2}}[/tex]

[tex]d_A_B=5\ units[/tex]

step 2

Find the distance BC

[tex]B(1,5),C(7,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-5)^{2}+(7-1)^{2}}[/tex]

[tex]d=\sqrt{(-8)^{2}+(6)^{2}}[/tex]

[tex]d_B_C=10\ units[/tex]

step 3

Find the distance AD

[tex]A(-3,2),D(0,-2)[/tex]

substitute in the formula

[tex]d=\sqrt{(-2-2)^{2}+(0+3)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(3)^{2}}[/tex]

[tex]d_A_D=5\ units[/tex]

step 4

Find the area

[tex]A=\frac{1}{2}[BC+AD]AB[/tex]

substitute the values

[tex]A=\frac{1}{2}[10+5]5[/tex]

[tex]A=37.5\ units^2[/tex]