helpppp!!!!!!!!!!!!!
![helpppp class=](https://us-static.z-dn.net/files/d15/938113c8c931a57b256285ca3b2fc33e.jpg)
Answer:
[tex]A=37.5\ units^2[/tex]
Step-by-step explanation:
we know that
The area of a trapezoid is equal to
[tex]A=\frac{1}{2}[b1+b2]h[/tex]
where
b1 and b2 are the parallel bases
h is the height of trapezoid (perpendicular distance between the two parallel bases)
In this problem the area is equal to
[tex]A=\frac{1}{2}[BC+AD]AB[/tex]
we have the coordinates
[tex]A(-3,2),B(1,5),C(7,-3),D(0,-2)[/tex]
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
step 1
Find the distance AB
[tex]A(-3,2),B(1,5[/tex]
substitute in the formula
[tex]d=\sqrt{(5-2)^{2}+(1+3)^{2}}[/tex]
[tex]d=\sqrt{(3)^{2}+(4)^{2}}[/tex]
[tex]d_A_B=5\ units[/tex]
step 2
Find the distance BC
[tex]B(1,5),C(7,-3)[/tex]
substitute in the formula
[tex]d=\sqrt{(-3-5)^{2}+(7-1)^{2}}[/tex]
[tex]d=\sqrt{(-8)^{2}+(6)^{2}}[/tex]
[tex]d_B_C=10\ units[/tex]
step 3
Find the distance AD
[tex]A(-3,2),D(0,-2)[/tex]
substitute in the formula
[tex]d=\sqrt{(-2-2)^{2}+(0+3)^{2}}[/tex]
[tex]d=\sqrt{(-4)^{2}+(3)^{2}}[/tex]
[tex]d_A_D=5\ units[/tex]
step 4
Find the area
[tex]A=\frac{1}{2}[BC+AD]AB[/tex]
substitute the values
[tex]A=\frac{1}{2}[10+5]5[/tex]
[tex]A=37.5\ units^2[/tex]