ahogge
contestada

A solution of 10% sulfuric acid and one of 25% sulfuric acid are to be used to make 500 ml of 20% sulfuric acid. How many ml of each solution needs to be used in the mixture? (round answers to the nearest ml)

Respuesta :

Step-by-step explanation:

If x is the volume of the 10% sulfuric acid, and y is the volume of 25% sulfuric acid, then:

x + y = 500

0.10 x + 0.25 y = 0.20 (500)

Solve the system of equations with substitution or elimination.  Using substitution:

y = 500 − x

0.10 x + 0.25 (500 − x) = 0.20 (500)

0.10 x + 125 − 0.25 x = 100

25 = 0.15 x

x = 167 mL

y = 333 mL

You need 167 mL of 10% sulfuric acid and 333 mL of 25% sulfuric acid.

Answer:

Step-by-step explanation:

x ml of 10 % sulfuric acid+(500-x) of 25% sulfuric acid=500 ml of 25% sulfuric acid

[tex]\frac{10x}{100} +\frac{25(500-x)}{100} =\frac{500*20}{100} \\10x+12500-25x=10000\\-15x=-2500\\3x=500\\x=\frac{500}{3} =166\frac{2}{3} \\500-x=500-\frac{500}{3} =\frac{1000}{3} =333\frac{1}{3} \\166\frac{2}{3} ~ml~of~10%~%~sulfuric~acid.\\333\frac{1}{3}~ml~of~25 %~%~sulfuric~acid\\[/tex]