Respuesta :

Answer:

Step-by-step explanation:

Answer:

option C ⇒ C) y = -x² + 18x - 74

Step-by-step explanation:

The given options are:

A) y = -x² + 14x - 40

B) y = -x² - 18x - 88

C) y = -x² + 18x - 74

D) y = -x² - 14x - 58

=================================

The general equation of the parabola has the form:

y = f(x) = ax² + bx + c

The vertex of the parabola has the coordinates (h , k)

where h = [tex]\frac{-b}{2a}[/tex]

and     k = f(h) = f([tex]\frac{-b}{2a}[/tex])

Check option A: a = -1 , b = 14  ⇒ (h,k) = (7, f(7) ) = (7 , 9)

Check option B: a = -1 , b = -18 ⇒ (h,k) = (-9, f(-9) ) = (-9,-7)

Check option C: a = -1 , b = 18  ⇒ (h,k) = (9, f(9) ) = (9,7)

Check option D: a = -1 , b = -14 ⇒ (h,k) = (-7, f(7) ) = (-7,-9)

So the equation which has a maximum at (9,7) ⇒ y = -x² + 18x - 74

So, the correct answer is option C

Answer:

C

Step-by-step explanation:

y = a(x - h)² + k

Since it's a maximum turning point:

a < 0

From the options available, a = -1

y = -(x - 9)² + 7

y = -(x² - 18x + 81) + 7

y = -x² + 18x - 81 + 7

y = -x² + 18x - 74

ACCESS MORE