Which is the following is the set of real zeros of the function f(x) = (x3 + 1000)(x4 - 160,000)?
A. { -20, -10, 20}

B. { -20, -10, 10, 20}

C. { -10, 20}

D. { -20, 20}

Respuesta :

Answer:

A. { -20, -10, 20 }

Step-by-step explanation:

Given:

The function is given as:

[tex]f(x)=(x^3+1000)(x^4-160000)[/tex]

Let us simplify the function.

First, we use the identity [tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex]

[tex]x^2+1000= x^3+10^3=(x+10)(x^2-10x+10^2)\\x^3+1000=(x+10)(x^2-10x+100)[/tex]

Next, we use the identity [tex]a^4-b^4=(a-b)(a+b)(a^2+b^2)[/tex]

[tex]x^4-160000=x^4-20^4=(x-20)(x+20)(x^2+20^2)=(x-20)(x+20)(x^2+400)[/tex]

Now, the function can be rewritten as:

[tex]f(x)=(x+10)(x^2-10x+100)(x-20)(x+20)(x^2+400)[/tex]

Now, the zeros are those values of [tex]x[/tex] for which [tex]f(x)=0[/tex]

Now, for [tex]f(x)=0[/tex], we must have either of the factors 0.

[tex]x+10=0\\x=-10[/tex]

[tex]x-20=0\\x=20\\\\x+20=0\\x=-20[/tex]

The factors [tex]x^2-10x+100[/tex] and [tex]x^2+400[/tex] can have no zeros as the first one has imaginary roots and second one is always greater than 0 irrespective of the [tex]x[/tex] values.

So, the possible set of zeros are { -20, 10, 20 }.

Answer:

a

Step-by-step explanation: