Answer:
The Original Number is 36
Step-by-step explanation:
Given:
y is the number in units place
x is the number in tens place
Original Number = [tex]10x+y[/tex]
[tex]x+y=9[/tex] is equation 1
Now after interchanging the digits
New number = [tex]10y+x[/tex]
New Number = 27 + Original Number
Substituting Valus in above equation we get.
[tex]10y+x=27+10x+y\\10y-y+x-10x=27\\9y-9x=27\\9(y-x)=27\\y-x=\frac{27}{9}\\[/tex]
[tex]y-x=3[/tex] let this be equation 2
Adding equation 1 and 2 we get
[tex](x+y=9)+(y-x=3)\\2y=12\\y=\frac{12}{2}\\y= 6\\[/tex]
Substituting value of y in equation 1 we get
[tex]x+y=9\\x+6=9\\x=9-6\\x=3[/tex]
x=3 and y=6
Original Number = [tex]10x+y=10\times3+6=30+6=36[/tex]