Which of the following quartic functions has x=-1 and x = -2 as its only two real zeros?
![Which of the following quartic functions has x1 and x 2 as its only two real zeros class=](https://us-static.z-dn.net/files/d46/fe9421d6537b16939dd2802308aafa8b.png)
Answer:
Equation 3
Step-by-step explanation:
Lets see which of the functions has -2 as a zero root. We will go in order:
(1) (-2)^4 - 3(-2)^3 + 3(-2)^2 -3(-2) + 2 = 16 - 3(-8) + 3(4) + 6 +2 = 16 +24 +12 + 6 +2 =60 >0
So, (1) is wrong!
(2) (-2)^4 + 3(-2)^3 + 3(-2)^2 - 3(-2) - 2 = 16 - 24 + 12 + 6 - 2 =34 - 26 = 8 > 0
(2) is also wrong!
(3) (-2)^4 + 3(-2)^3 + 3(-2)^2 +3(-2) + 2 = 16 - 24 + 12 - 6 + 2 = 30 -30 = 0
The zero root x=-2 fits, what about x=-1?
(-1)^4 + 3(-1)^3 + 3(-1)^2 +3(-1) + 2 = 1 - 3 + 3 - 3 + 2 = 6 - 6 = 0
So, equation (3) fits both!
Finally, lets see (4):
(-2)^4 - 3(-2)^3 - 3(-2)^2 + 3(-2) + 2 = 16 + 24 - 12 - 6 + 2 = 42 - 18 = 24 > 0
So, (4) is also wrong.
Only equation 3 fits both zero roots!