Respuesta :

Answer:

So the answer is [tex]y= (x^{4} +5x^{2}+4 )[/tex]

Step-by-step explanation:

Given;

[tex]N=4[/tex] , 'I' and '2I' are zeros and

[tex]F(-2)=40[/tex]   (equation-1)

Assuming you need real coefficients so you use complex conjugate roots;

[tex]y=a\times(x-i)\times (x+i)\times (x-2i)\times (x+2i)[/tex]   Where [tex]y=F(x)[/tex]

[tex]y=a\times (x^{2} -i^{2} )\times (x^{2} -4i^{2} )[/tex]   (By applying [tex](a-b)(a+b)=a^{2} -b^{2}[/tex])

[tex]y=a\times(x^{2}+1 )(x^{2}+4 )[/tex]    (We know [tex]i^{2} =-1[/tex] )

[tex]y=a\times (x^{4}+4x^{2} +x^{2} +4 )[/tex]

[tex]y=a\times (x^{4}+5x^{2} +4 )[/tex]  (equation-2)

From equation;

[tex]x=-2[/tex] and [tex]y=40[/tex]

Plug 'x' and 'y' value in equation-2,

[tex]40=a\times ((-2)^{4}+5(-2)^{2} +4 )[/tex]

[tex]40=a\times (16+20+4)[/tex]

[tex]40=a\times 40[/tex]

[tex]a=1[/tex]

Now equation-2 become;

[tex]y=1\times (x^{4} +5x^{2}+4 )[/tex]

∴[tex]y= (x^{4} +5x^{2}+4 )[/tex]

ACCESS MORE