A test has twenty questions worth 100 points. The test consists of x true-false questions worth 4 points each and y multiple choice questions worth 8 points each. How many of each type of question are on the test?

Respuesta :

Answer:

Number of true-false questions  =15

Number of multiple choice questions  =5

Step-by-step explanation:

Number of true-false questions  =[tex]x[/tex]

Number of multiple choice questions  =[tex]y[/tex]

Total number of question =[tex]x+y=20[/tex]

Points for true-false questions = 4

Total points for true-false questions = [tex]4\times x =4x[/tex]

Points for multiple choice questions = 8

Total points for multiple choice questions = [tex]8\times y =8y[/tex]

Total points of the test = [tex]4x+8y=100[/tex]

We have 2 equations now:

(1) [tex]x+y=20[/tex]

(2) [tex]4x+8y=100[/tex]

We need to solve the 2 equations to find [tex]x[/tex] and [tex]y[/tex].

Dividing equation 2 by 4.

[tex]\frac{4x+8y}{4}=\frac{100}{4}[/tex]

(2a) [tex]x+2y=25[/tex]

Multiplying equation (2a) with (-1)

[tex]-1(x+2y)=25\times (-1)[/tex]

(2b) [tex]-x-2y=-25[/tex]

Adding equation (2a) with equation (1).

[tex]x+y=20[/tex]

[tex]-x-2y=-25[/tex]

[tex]-y=-5[/tex]

[tex]y=5[/tex]      [ Divided both sides by -1]

Substituting value of [tex]y[/tex] in equation (1).

[tex]x+5=20[/tex]

Subtracting both sides by 5.

[tex]x+5-5=20-5[/tex]

[tex]x=15[/tex]

∴[tex]x=15 \ and\ y=5[/tex]

Number of true-false questions  =15

Number of multiple choice questions  =5

ACCESS MORE