Respuesta :
Answer:
1. 6√105
2. 4√5
3. D
Step-by-step explanation:
Math is an interesting invention.
Answer:
Simplify [tex]\sqrt{28} \times \sqrt{27} \times \sqrt{5}[/tex]
Observe that all roots are similar, because they are square roots.
To simplify this products, we can write only one root and multiply all sub-radical numbers, as follows
[tex]\sqrt{28} \times \sqrt{27} \times \sqrt{5}=\sqrt{28 \times 27 \times 5}[/tex]
It's better to maintain the product as factors, so, let's express each number in a power
[tex]\sqrt{28} \times \sqrt{27} \times \sqrt{5}=\sqrt{28 \times 27 \times 5}=\sqrt{2^{2} \times 7 \times 3^{2} \times 3 \times 5 }[/tex]
Then, all square powers can go out the root
[tex]\sqrt{2^{2} \times 7 \times 3^{2} \times 3 \times 5 }=2\times 3 \sqrt{105}=6 \sqrt{105}[/tex]
Therefore, the answer here is [tex]6\sqrt{105}[/tex]
Simplify [tex]2\sqrt{5}+3\sqrt{5}-\sqrt{5}[/tex]
Observe that all roots are exactly the same, we proceed to sum and subtract the whole part of each term
[tex]2\sqrt{5}+3\sqrt{5}-\sqrt{5}=(2+3-1)\sqrt{5}=4\sqrt{5}[/tex]
Therefore, the answer is [tex]4\sqrt{5}[/tex]
Which expression is equal to [tex]2\sqrt{28}-5\sqrt{63}[/tex]
Let's express each root in factors
[tex]2\sqrt{28}-5\sqrt{63}=2\sqrt{7 \times 4} -5 \sqrt{7 \times 9}[/tex]
Then, we solve the root for 4 and 9
[tex]2\sqrt{7 \times 4} -5 \sqrt{7 \times 9}=4\sqrt{7}-15\sqrt{7}[/tex]
Then, we subtract
[tex]4\sqrt{7}-15\sqrt{7}=-11\sqrt{7}[/tex]
Therefore, the right answer is D.