Respuesta :

Answer:

42°

Step-by-step explanation:

Since it is an isosceles triangle, the base angles are equal. Let the base angles be [tex]x[/tex].

Hence, $x+x+48=180$, since sum of internal angles in ∆ABC is 180°.

Hence, $x=132/2=66°$

In ∆PBC,

[tex] PB=PC\\

\implies m\angle PBC= m\angle PCB[/tex]

But, [tex] \angle ABD= \angle PBC =\frac{1}{2} m\angle ABC =24°\\

\implies m\angle PCB=24°\\

Now,\\

m \angle ACB= m\angle PCD + m\angle PCB\\

\implies m\angle PCD= 66-24=42°[/tex]