Respuesta :
Answer:
Explanation:
Electric field E = 4 x 10⁷ V / m
Dielectric constant k = 24
capacitance of capacitor
C = kε₀ A / d
d = plate separation
A = plate area
C = .89 x 10⁻⁶
V / d = electric field
for minimum d , electric field will be maximum
V / d = 4 x 10⁷
1930 / d = 4 x 10⁷
d = 1930 / 4 x 10⁷
d = 482.5 x 10⁻⁷ m
= 48.25 x 10⁻⁶ m
C = kε₀ A / d
.89 x 10⁻⁶ = 24 ε₀ A / d
A = .89 x 10⁻⁶ X d / 24 ε₀
A = .89 x 10⁻⁶ X 48.25 x 10⁻⁶ / 24 x 8.85 x 10⁻¹²
= 42.9 / 212.4
= .2019 m²
Answer:
a) [tex]d=0.4699\,m[/tex]
b) [tex]A=1969.1\,m^2[/tex]
Explanation:
Given that:
dielectric constant, [tex]k=24[/tex]
electric field, [tex]E=4107 \,V.m^{-1}[/tex]
capacitance, [tex]C=0.89\times 10^{-6}\,F[/tex]
potential difference, [tex]V=1930\,V[/tex]
(a)
We know for two parallel plates is given by:
[tex]V=E.d[/tex]
where: d= distance between the plates.
[tex]1930=4107\times d[/tex]
[tex]d=0.4699\,m[/tex]
(b)
For parallel plate capacitor we have:
[tex]C=\frac{k.\epsilon_0.A}{d}[/tex]
where:
A= area of plates
permittivity of free space, [tex]\epsilon_0=8.85\times 10^{-12}\,F.m^{-1}[/tex]
[tex]0.89\times 10^{-6}=\frac{24\times 8.85\times 10^{-12}\times A}{0.4699}[/tex]
[tex]A=1969.1\,m^2[/tex]