Respuesta :
CH₄(g)+5O₂(g)+5NO(g) -----> CO₂(g)+H₂O(g)+5NO₂(g)+2OH(g)
(A)
First let's identify the limiting reactant, we're given the volume of each gas at STP, so we can use PV=nRT to calculate the moles of each gas:
- CH₄⇒ n = 1atm*0.150L/(0.082atm·L·mol⁻¹·K⁻¹*273K) = 6.70x10⁻³ mol CH₄
- O₂⇒ n = 1atm*0.885L/(0.082atm·L·mol⁻¹·K⁻¹*273K) = 0.0395 mol O₂
- NO⇒ n = 1atm*0.0595L/(0.082atm·L·mol⁻¹·K⁻¹*273K) = 2.66x10⁻³ mol NO
With 6.70x10⁻³ mol CH₄ we would need (5*6.70x10⁻³) 0.0335 mol NO, there's not enough NO to fully react with CH₄ or O₂, thus NO is the limiting reactant.
(B)
The amount of NO moles that reacted is
- 2.66x10⁻³ * 0.88 = 2.341x10⁻³ mol NO reacted
- Remaining moles NO= 2.66x10⁻³ - 2.341x10⁻³ = 3.190x10⁻⁴ mol NO
Then we determine the moles of CH₄ and O₂ that reacted:
- CH₄⇒ 2.341x10⁻³ mol NO * (1molCH₄/5molNO) = 4.682x10⁻⁴ mol CH₄ reacted
Remaining moles CH₄ = 6.70x10⁻³ - 4.682x10⁻⁴ = 6.232x10⁻³ mol CH₄
- O₂⇒ 2.341x10⁻³ mol NO * (5molO₂/5molNO) = 2.341x10⁻³ mol O₂ reacted
Remaining moles O₂ = 0.0395 - 2.341x10⁻³ = 0.0371 mol O₂
Now we use PV=nRT to calculate the partial pressure of each reactant after the reaction, using V=2.2L and STP:
CH₄⇒ P = 6.232x10⁻³mol*0.082atm·L·mol⁻¹·K⁻¹*273.16K/2.2L=6.345x10⁻³ atm
O₂⇒ P = 0.378 atm
NO ⇒ P = 3.248x10⁻³ atm
(B) Part 2
We calculate the amount of each product formed and again use PV=nRT to calculate P:
CO₂ ⇒ 4.682x10⁻⁴ mol CH₄ *(1molCO₂/1molCH₄)=4.682x10⁻⁴ mol CO₂
- P = 4.767x10⁻³ atm
H₂O ⇒ 4.682x10⁻⁴ mol CH₄ *(1molH₂O/1molCH₄)=4.682x10⁻⁴ mol H₂O
- P = 4.767x10⁻³ atm
NO₂ ⇒ 4.682x10⁻⁴ mol CH₄ *(5molNO₂/1molCH₄)=2.341x10⁻³ mol NO₂
- P = 0.0238 atm
OH ⇒ 4.682x10⁻⁴ mol CH₄ *(2molOH/1molCH₄) = 9.364x10⁻⁴ mol OH
- P = 9.533x10⁻³ atm
(C)
The total pressure is the sum of all the partial pressures
P₊=PCH₄ + PO₂ + PNO + PCO₂ + PH₂O + PNO₂ + POH
P₊=0.430 atm