Respuesta :
Answer:
(a) 2540 N
(b) 620 N
Explanation:
mass of car, M = 960 kg
mass of trailer, m = 310 kg
acceleration, a = 2 m/s^2
Let the net force on the car is F and the net force on the trailer is T.
(a) According to the free body diagram, use Newton's second law
F - T = Ma .... (1)
T = ma .... (2)
Adding both the equations
F = (M+m)a
F = (960 + 310) x 2
F = 2540 N
Thus, the force on the car is 2540 N.
(b) By the equation (2), we get
T = 310 x 2 = 620 N
Thus, the force on trailer is 620 N.
Answer:
a) [tex]F_c=1920\,N[/tex]
b) [tex]F_c=620\,N[/tex]
c) [tex]T=620\,N[/tex]
d) [tex]F_R=9497.39\,N[/tex]
[tex]\theta=81.133^{\circ}[/tex] from the horizontal.
Explanation:
Given:
mass of the car, [tex]m_c=960\,kg[/tex]
mass of trailer, [tex]m_t=310\,kg[/tex]
acceleration of the system, [tex]a=2\,m.s^{-2}[/tex]
(a)
Net force on the car will be in the direction of acceleration given by:
[tex]F_c=m_c.a[/tex]
[tex]F_c=960\times 2[/tex]
[tex]F_c=1920\,N[/tex]
(b)
[tex]F_t=m_t.a[/tex]
[tex]F_t=310\times 2[/tex]
[tex]F_t=620\,N[/tex]
(c)
Since the car and the trolley are linked together, the link will face a tension force and this will be exerted on the car by the Newton's third law of motion which can be given as:
[tex]T=2\times 310[/tex]
[tex]T=620\,N[/tex]
(d)
Net vertical force acting on the road due to car:
[tex]F_v=m_c.g[/tex]
[tex]F_v=960\times 9.8[/tex]
[tex]F_v=9408\,N[/tex]
Net vertical force acting on the road:
[tex]F_h=(960-310)\times 2[/tex]
[tex]F_h=1300\,N[/tex]
Now, the net resultant force:
[tex]F_R=\sqrt{(1300)^2+(9408)^2}[/tex]
[tex]F_R=9497.39\,N[/tex]
Angle f the force from horizontal:
[tex]tan\theta=\frac{9408}{1300}[/tex]
[tex]\theta=81.133^{\circ}[/tex] from the horizontal.