Answer:
[tex]\dot{V}=0.0733 \,m^3.s^{-1}[/tex]
Explanation:
Given:
density, [tex]\rho=860\,kg.m^{-3}[/tex]
diameter of the pipe, [tex]d=2.5\times 10^{-2}m[/tex]
pressure difference, [tex]\Delta P=95.8\times 10^{5}\,Pa[/tex]
In case of pitot tube, the velocity is given by:
[tex]v=\sqrt{\frac{2.\Delta P}{\rho} }[/tex]
[tex]v=\sqrt{\frac{2\times 95.8\times 10^{5}}{860} }[/tex]
[tex]v=149.26\,m.s^{-1}[/tex]
Now we know that volumetric flow rate is given as:
[tex]\dot{V}=a.v[/tex]
where :
a= cross sectional area of the pipe
v= velocity of flow
[tex]\dot{V}=(\pi\times \frac{(2.5\times 10^{-2})^2}{4} ) \times 149.26[/tex]
[tex]\dot{V}=0.0733 \,m^3.s^{-1}[/tex]