Respuesta :
Answer:
3.03m
Explanation:
Assuming that energy is conserved between the initial and the final states.
In the initiat state, from the question, we have both gravitational potential and elastic potential energy, while in the final state, we have only kinetic energy.
Hence:
1/2ks * s^2 + (-GMm/R) = 1/2mvf^2
ks * s^2 = mvf^2 + 2GMm/R
s = √m/ks(vf^2 + 2GM/R)
= √5/1.6*10^5(165^2 + 2(6.67*10^-11)(7.0*10^20)/3.5*10^5
= √(0.00003125 * (27225 + 266800)
= √(0.00003125 * 294025
= √ (9.18828125)
= 3.03m
The elongation of the spring during compression will be [tex]s=1.82m[/tex]
What will be the compression of the spring?
It is given that
Mass of package, m = 5 kg
Mass of asteroid, [tex]M=3\times10^{20} kg[/tex]
The radius of the asteroid, [tex]R=4.3\times 10^5m[/tex]
Velocity is an asteroid, [tex]V_f=163\ \frac{m}{s}[/tex]
Spring constant [tex]K=1.8\times10^5\frac{N}{m}[/tex]
Now from the conservation of energy
Initial Energy = Final Energy
[tex]\dfrac{1}{2} ks^2+\dfrac{GMm}{R} = \dfrac{1}{2} mV_f^2[/tex]
[tex]Ks^2=\dfrac{2GMm}{R} +mV_f^2[/tex]
[tex]Ks^2=m(\dfrac{2GM}{R} +V_f^2)[/tex]
[tex]s^2=\dfrac{m}{k} (\dfrac{2GM}{R} +V_f^2)[/tex]
[tex]s^2= \dfrac{5}{1.8\times10^5} [(\dfrac{2\times 6.67\times10^{-11}\times 3\times10^{20}}{4.3\times10^5} )+163^2][/tex]
[tex]s^2=3.314[/tex]
[tex]s=\sqrt{3.314}[/tex]
[tex]s=1.82m[/tex]
Thus the elongation of the spring during compression will be [tex]s=1.82m[/tex]
To know more about the Conservation of energy follow
https://brainly.com/question/24772394