Answer:
[tex]P(A)=\dfrac{1}{6}[/tex]
[tex]P(B)=\dfrac{5}{36}[/tex]
[tex]P(A\cap B)=\dfrac{1}{36}[/tex]
No, events A and B are not independent events.
Step-by-step explanation:
Suppose that Antonía rolls a pair of fair six-sided dice.
All possible outcomes are:
[tex]\begin{array}{cccccc}(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\end{array}[/tex]
(36 outcomes in total)
A = the first die lands on 5
Favorable outcomes:
[tex](5,1),\ (5,2),\ (5,3),\ (5,4),\ (5,5),\ (5,6)[/tex]
(6 outcomes)
Hence,
[tex]P(A)=\dfrac{6}{36}=\dfrac{1}{6}[/tex]
B = the sum of the two dice is 6
Favorable outcomes:
[tex](1,5),\ (2,4),\ (3,3),\ (4,2),\ (5,1)[/tex]
(5 outcomes)
Hence,
[tex]P(B)=\dfrac{5}{36}[/tex]
A∩B = the first die lands on 5 and the two dice add up to 6
Favorable outcomes:
[tex](5,1)[/tex]
(1 outcome)
Hence,
[tex]P(A\cap B)=\dfrac{1}{36}[/tex]
Two events are independent when
[tex]P(A\cap B)=P(A)\cdot P(B)[/tex]
Since
[tex]\dfrac{1}{36}\neq \dfrac{5}{36}\cdot \dfrac{1}{6},[/tex]
events are not independent.