Respuesta :
Answer:
Explanation:
Let T be the tension .
Applying newton's second law on the downward movement of the bucket
mg - T = ma
On the drum , a torque of TR will be acting which will create an angular acceleration of α in it . If I be the moment of inertia of the drum
TR = Iα
TR = Ia/ R
T = Ia/ R²
Replacing this value of T in the other equation
mg - T = ma
mg - Ia/ R² = ma
mg = Ia/ R² +ma
a ( I/ R² +m)= mg
a = mg / ( I/ R² +m)
mg - T = ma
mg - ma = T
mg - m x mg / ( I/ R² +m) = T
mg - m²g / ( I/ R² +m ) = T
mg - mg / ( 1 + I / m R² ) = T
b ) T = Ia/ R²
I = TR² / a
c ) Moment of inertia of hollow cylinder
I = 1/2 M ( R² - R² / 4 )
= 3/4 x 1/2 MR²
= 3/8 MR²
I / R² = 3/8 M
a = mg / ( I/ R² +m)
a = mg / ( 3/8 M + m )
T = Ia/ R²
= 3/8 MR² x mg / ( 3/8 M + m ) x 1 /R²
= [tex]\frac{3mMg}{(3M +8m)}[/tex]
- The tension in the cable between the drum and the bucket-
[tex]T = mg - (m²g/(I/R² + m)[/tex]
Let T be the tension in the cable between the drum and the bucket.
What is the moment of inertia?
The quantitative measure of the rotational inertia of a body—i.e., the opposition that the body exhibits to having its speed of rotation about an axis altered by the application of torque (turning force).
Applying newton's second law on the downward movement of the bucket.
[tex]mg - T = ma[/tex]
On the drum, a torque of TR will be acting which will create an angular acceleration of α in it. If I a moment of inertia of the drum.
[tex]TR = Iα[/tex]
[tex]TR = Ia/ R[/tex]
[tex]T = Ia/ R²[/tex]
Replacing this value of T in the other equation.
[tex]mg - T = ma[/tex]
[tex]mg - Ia/ R² = ma[/tex]
[tex]mg = Ia/ R² +ma[/tex]
[tex]a ( I/ R² +m)= mg[/tex]
[tex]a = mg / ( I/ R² +m)[/tex]
[tex]mg - T = ma[/tex]
[tex]mg - ma = T[/tex]
[tex]mg - m x mg / ( I/ R² +m) = T[/tex]
[tex]mg - m²g / ( I/ R² +m ) = T[/tex]
[tex]mg - mg / ( 1 + I / m R² ) = T[/tex]
b ) [tex]T = Ia/ R²[/tex]
[tex]I = TR² / a[/tex]
- Moment of inertia of the hollow cylinder.
[tex]I = 1/2 M ( R² - R² / 4 )[/tex]
[tex]= 3/4 x 1/2 MR²[/tex]
[tex]= 3/8 MR²[/tex]
[tex]I / R² = 3/8 M[/tex]
[tex]a = mg / ( I/ R² +m)[/tex]
[tex]a = mg / ( 3/8 M + m )[/tex]
[tex]T = Ia/ R²[/tex]
=[tex]3/8 MR² x mg / ( 3/8 M + m ) x 1 /R²[/tex]
= ([tex]\frac{ 3mMg}{3M+8m}[/tex])
Therefore, the result is = ([tex]\frac{ 3mMg}{3M+8m}[/tex]).
Learn more about the moment of inertia here:
https://brainly.com/question/6953943