Respuesta :
Answer:
Machine I
capitalized cost: 230,271.28
EAC: $ 27,047.58
Machine II
EAC: $ 27,377.930
As Machine I cost per year is lower it is better to purchase that one.
Annual deposits to purchase Machine I in 20 years: $ 1,396.770
return of machine I with savings of 28,000 per year: 10.51%
Explanation:
WE calculate the present worth of each machine and then calculate the equivalent annual cost:
MACHINE 1
Operating cost:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 18,000
time 20
rate 0.1
[tex]18000 \times \frac{1-(1+0.1)^{-20} }{0.1} = PV\\[/tex]
PV $153,244.1470
Salvage value:
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $20,000.0000
time 20.00
rate 0.1
[tex]\frac{20000}{(1 + 0.1)^{20} } = PV[/tex]
PV 2,972.87
Total: -80,000 cost - 153,244.15 annual cost + 2,972.87 salvage value:
Total: 230,271.28
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
Present worth $(230,271.28)
time 20
rate 0.1
[tex]-230271.28 \div \frac{1-(1+0.1)^{-20} }{0.1} = C\\[/tex]
C -$ 27,047.578
Fund to purchase in 20 years:
[tex]FV \div \frac{(1+r)^{time} -1}{rate} = C\\[/tex]
FV $80,000.00
time 20
rate 0.1
[tex]80000 \div \frac{(1+0.1)^{20} -1}{0.1} = C\\[/tex]
C $ 1,396.770
IF produce a 28,000 savings:
we must solve using a financial calcualtor for the rate at which the capitalized cost equals 28,000
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV $230,271.28
time 20
rate 0.105126197
[tex]230271.28 \div \frac{1-(1+0.105126197287798)^{-20} }{0.105126197287798} = C\\[/tex]
C $ 28,000.000
rate of 0.105126197 = 10.51%
Machine II
100,000 cost
25,000 useful life
15,000 operating cost during 10 years
20,000 for the next 15 years
Present value of the operating cost:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 15,000
time 10
rate 0.1
[tex]15000 \times \frac{1-(1+0.1)^{-10} }{0.1} = PV\\[/tex]
PV $92,168.5066
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 20,000
time 15
rate 0.1
[tex]20000 \times \frac{1-(1+0.1)^{-15} }{0.1} = PV\\[/tex]
PV $152,121.5901
in the timeline this is at the end of the 10th year we must discount as lump sum for the other ten years:
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $152,121.5901
time 10.00
rate 0.1
[tex]\frac{152121.590126167}{(1 + 0.1)^{10} } = PV[/tex]
PV 58,649.46
salvage value
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $25,000.0000
time 25.00
rate 0.1
[tex]\frac{25000}{(1 + 0.1)^{25} } = PV[/tex]
PV 2,307.40
Total cost: 100,000 + 92,168.51 + 58,649.46 - 2,307.40 = $248,510.57
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV $248,510.57
time 25
rate 0.1
[tex]248510.57 \div \frac{1-(1+0.1)^{-25} }{0.1} = C\\[/tex]
C $ 27,377.930