Answer:
Ts = 413.66 K
Explanation:
given data
temperature = 20°C
velocity = 10 m/s
diameter = 5 mm
surface emissivity = 0.95
surrounding temperature = 20°C
heat flux dissipated = 17000 W/m²
to find out
surface temperature
solution
we know that here properties of air at 70°C
k = 0.02881 W/m.K
v = 1.995 ×[tex]10^{-5}[/tex] m²/s
Pr = 0.7177
we find here reynolds no for air flow that is
Re = [tex]\frac{\rho V D }{\mu } = \frac{VD}{v}[/tex]
Re = [tex]\frac{10*0.005}{1.99*10^{-5}}[/tex]
Re = 2506
now we use churchill and bernstein relation for nusselt no
Nu = [tex]\frac{hD}{k}[/tex] = 0.3 + [tex]\frac{0.62 Re6{0.5}Pr^{0.33}}{[1+(0.4/Pr)^{2/3}]^{1/4}} [1+ (\frac{2506}{282000})^{5/8}]^{4/5}[/tex]
h = [tex]\frac{0.02881}{0.005}[/tex]0.3 + [tex]\frac{0.62*2506{0.5}0.7177^{0.33}}{[1+(0.4/0.7177)^{2/3}]^{1/4}} [1+ (\frac{2506}{282000})^{5/8}]^{4/5}[/tex]
h = 148.3 W/m².K
so
q conv = h∈(Ts- T∞ )
17000 = 148.3 ( 0.95) ( Ts - (20 + 273 ))
Ts = 413.66 K