Answer:
0.98kW
Explanation:
The conservation of energy is given by the following equation,
[tex]\Delta U = Q-W[/tex]
[tex]\dot{m}(h_1+\frac{1}{2}V_1^2+gz_1)-\dot{W} = \dot{m}(h_2+\frac{1}{2}V_2^2+gz_)[/tex]
Where
[tex]\dot{m} =[/tex] Mass flow
[tex]h_1 =[/tex]Specific Enthalpy (IN)
[tex]h_2 =[/tex] Specific Enthalpy (OUT)
[tex]g =[/tex] Gravity
[tex]z_{1,2} =[/tex] Heigth state (In, OUT)
[tex]V_{1,2} =[/tex]Velocity (In, Out)
Our values are given by,
[tex]T_i = 10\°C[/tex]
[tex]P_1 = 100kPa[/tex]
[tex]\dot{m} = 5kg/s[/tex]
[tex]z_2 = 20m[/tex]
For this problem we know that as pressure, temperature as velocity remains constant, then
[tex]h_1 = h_2[/tex]
[tex]V_1 = V_2[/tex]
Then we have that our equation now is,
[tex]\dot{m}(gz_1) = \dot{m}(gz_2)+\dot{W}[/tex]
[tex]\dot{W} = \frac{(5)(9.81)(0-20)}{1000}[/tex]
[tex]\dot{W} = -0.98kW[/tex]