Answer:
I. [tex]E(X)=6.5[/tex]
σ = 1.299
II. [tex]P(X<5.5)=0.2777[/tex]
III. [tex]P(6.0<X<7.5)= 0.3333[/tex]
Explanation:
Let's start defining the random variable X.
X : ''The data transfer rate that a phone experiences''
X is a continuous random variable.
X ~ U (4.25,8.75)
For a uniformly distributed random variable the probability density function is :
X ~ U [a,b]
[tex]f(x)=\frac{1}{b-a}[/tex] if x ∈ (a,b)
[tex]f(x)=0[/tex] if x ∉ (a,b)
In this exercise :
[tex]f(x)=\frac{1}{8.75-4.25}=\frac{1}{4.5}[/tex] if x ∈ (4.25,8.75)
[tex]f(x)=0[/tex] if x ∉ (4.25,8.75)
I. The mean of a uniformly distributed random variable is :
[tex]E(X)=\frac{a+b}{2}[/tex]
[tex]E(X)=\frac{4.25+8.75}{2}=6.5[/tex]
[tex]E(X)=6.5[/tex]
The variance of a uniformly distributed random variable is :
[tex]Var(X)=\frac{(b-a)^{2}}{12}=\frac{(8.75-4.25)^{2}}{12}=1.6875[/tex]
For the standard deviation :
[tex]StandardDeviation=\sqrt{Var(X)}=\sqrt{1.6875}=1.299[/tex]
σ = 1.299
II. [tex]P(X<5.5)[/tex]
If c = - ∞ and d = 5.5 ⇒ [tex]P(X<5.5)=\int\limits^d_c {f(x)} \, dx[/tex]
[tex]P(X<5.5)=\frac{1}{4.5}.(5.5-4.25)=0.2777[/tex]
III. [tex]P(6.0<X<7.5)[/tex]
If e = 6.0 and f = 7.5 ⇒ [tex]P(6.0<X<7.5)=\int\limits^f_e {f(x)} \, dx=\frac{1}{4.5}.(7.5-6)=0.3333[/tex]
[tex]P(6.0<X<7.5)=0.3333[/tex]