The formula A=200e^.033t models the population of a particular city, in thousands, t years after 1998. When will the population of the city reach 297 thousand?

Respuesta :

Answer:

In the year 2010

Step-by-step explanation:

we have

[tex]A=200e^{0.033t}[/tex]

where

A is the population in thousands

t is the number of years since 1998

so

For A=297 thousands

substitute and solve for t

[tex]297=200e^{0.033t}[/tex]

simplify

[tex]1.485=e^{0.033t}[/tex]

Apply ln both sides

[tex]ln(1.485)=ln[e^{0.033t}][/tex]

[tex]ln(1.485)=(0.033t)ln(e)[/tex]

Remember that

[tex]ln(e)=1[/tex]

[tex]ln(1.485)=(0.033t)[/tex]

[tex]t=\frac{ln(1.485)}{0.033}[/tex]

[tex]t=12\ years[/tex]

1998+12=2010

ACCESS MORE