Answer:
D) [tex]A=1.1\times10^1m^2[/tex]
Explanation:
The capacitance of a parallel plate capacitor with a separation between the plates d, area of the plates A filled with a dielectric with relative permittivity k is given by the formula:
[tex]C=\frac{k \epsilon_0 A}{d}[/tex]
where [tex]\epsilon_0=8.85\times10^{-12}F/m[/tex] is the permittivity of free space (vacuum).
The energy stored on a capacitor can be calculated with:
[tex]U=\frac{CV^2}{2}[/tex]
Combining these two equations we have:
[tex]U=\frac{k \epsilon_0 A V^2}{2d}[/tex]
Which for the area and our values is:
[tex]A=\frac{2dU}{k \epsilon_0 V^2}=\frac{2(6.3\times10^{-7}m)(120J)}{(9.6)(8.85\times10^{-12}F/m)(400V)^2}=11.1m^2[/tex]