Answer :
42.26 mph (approx)
Explanation :
Given,
Fuel consumption = 500/x miles per gallon,
Speed = x miles per hour
Also, hourly cost = $2.80/gal,
So, fuel cost = [tex]\frac{1}{\frac{500}{x}}\times 2.80[/tex]
[tex]=\frac{2.80x}{500}[/tex] dollar per mile,
The driver earns $10 per hour.
So, labour cost = (10 dollars per hour) × (1/x hr per mile)
[tex]=\frac{10}{x}[/tex] dollars per mile,
Thus, total cost,
[tex]P = \frac{10}{x} + \frac{2.8x}{500}[/tex]
Differentiating with respect to x
[tex]\frac{dP}{dx} = -\frac{10}{x^2} + \frac{2.8}{500}[/tex]
Again differentiating with respect to x,
[tex]\frac{d^2P}{dx^2}=\frac{30}{x^3}[/tex]
When,
[tex]\frac{dP}{dt} = 0[/tex]
[tex]\implies 2.8 x^2 = 5000[/tex]
[tex]\implies x^2 = 1785.71428[/tex]
[tex]\implies x = 42.26[/tex]
At x = 42.26, [tex]\frac{d^2P}{dx^2}[/tex] = positive.
Hence, the speed would be 42.26 miles per hour.