Answer:
V₁ = √ (gy / 3)
Explanation:
For this exercise we will use the concepts of mechanical energy, for which we define energy n the initial point and the point of average height and / 2
Starting point
Em₀ = U₁ + U₂
Em₀ = m₁ g y₁ + m₂ g y₂
Let's place the reference system at the point where the mass m1 is
y₁ = 0
y₂ = y
Em₀ = m₂ g y = 2 m₁ g y
End point, at height yf = y / 2
[tex]E_{mf}[/tex] = K₁ + U₁ + K₂ + U₂
[tex]E_{mf}[/tex] = ½ m₁ v₁² + ½ m₂ v₂² + m₁ g [tex]y_{f}[/tex] + m₂ g [tex]y_{f}[/tex]
Since the masses are joined by a rope, they must have the same speed
[tex]E_{mf}[/tex] = ½ (m₁ + m₂) v₁² + (m₁ + m₂) g [tex]y_{f}[/tex]
[tex]E_{mf}[/tex]= ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g [tex]y_{f}[/tex]
How energy is conserved
Em₀ = [tex]E_{mf}[/tex]
2 m₁ g y = ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g [tex]y_{f}[/tex]
2 m₁ g y = ½ (3m₁) v₁² + (3m₁) g y / 2
3/2 v₁² = 2 g y -3/2 g y
3/2 v₁² = ½ g y
V₁ = √ (gy / 3)