Respuesta :
Answer:
[tex]P_g=1.1373Mpa[/tex]
Explanation:
A hand-pumped water gun is held level at a height of 0.75 m, this part miss of the question so now:
h=0.75 m
x=7.3 m
[tex]h=\frac{1}{2}*a*t^2[/tex]
[tex]a=g[/tex]
[tex]t=\sqrt{\frac{2*h}{g}}=\sqrt{\frac{2*0.75m}{9.8m/s^2}}[/tex]
[tex]t=0.153s[/tex]
[tex]v=\frac{x}{t}=\frac{7.3m}{0.153s}=47.6m/s[/tex]
Gauge Pressure can be find
[tex]P_g=\frac{1}{2}*1000*v^2[/tex]
[tex]P_g=\frac{1}{2}*1000*(47.69m)^2[/tex]
[tex]P_g=1.1373Mpa[/tex]
The Gauge pressure ( Pg ) of the water gun's reservoir at the Instant when the gun is fired is = 175219.2 Pa
Given data :
Horizontal distance travelled by the water from gun ( x ) = 7.3 m
( Missing Information ) Vertical distance of water gun ( h ) = 0.75 m
Next : determine the value of the Gauge pressure ( Pg )
Pg = 1/2 * 1000 * v² --- ( 1 )
where; v = x / t ----- ( 2 )
t = [tex]\sqrt{2*h ) / g }[/tex] = [tex]\sqrt{(2* 0.75)/9.81 }[/tex] = 0.39 sec
back to equation 2
v = 7.3 / 0.39 = 18.72 m/s
back to equation ( 1 )
Pg = 1/2 * 1000 * ( 18.72)²
= 175219.2 Pa
Hence we can conclude that the gauge pressure of the water gun's reservoir is 175219.2 Pa