Answer
given,
Let P₁ = $ 10 each and x₁ = 20 Per day
then P₂ = 10 + 1 = $11 each
average sale decreased by 2 sales per day
x₂ = 20 - 2 = 18 unit/day
a)
The demand function
[tex]P(x) = P_1 + \dfrac{P_2-P_1}{x_2-x_1}(x-20)[/tex]
=[tex]10+ \dfrac{11-10}{18-20}(x-20)[/tex]
=[tex]10- \dfrac{x-20}{2}[/tex]
= 20 - 0.5 x
the demand function = P(x) = 20 - 0.5 x
b) The cost function C(x) = 6 x
The revenue function is R(x) = x P(x)
= x (20 - 0.5 x)
= 20 x - 0.5 x²
Marginal revenue R'(x) = 20 - x
Maximum Profit
C'(x) = R'(x)
6 = 20 - x
x = 14
P(x = 14) = 20 - 0.5 x 14
= 20 - 7
= 13
The selling price of maximum profit $13