Respuesta :
Answer:
a) [tex]12.8N[/tex]
b) [tex]692.308\frac{kg}{m^{3}}[/tex]
c) [tex]2.6(10^{-3})m^{3}[/tex]
Explanation:
Let's write the information given by the exercise.
[tex]W(WoodenBall)=18.0N[/tex]
δ (Water) = [tex]1000\frac{kg}{m^{3}}[/tex]
[tex]g=10.0\frac{m}{s^{2}}[/tex]
The buoyant force exerted by the water is :
E= V.δ.g
Where E is the buoyant force
V is the shifted volume of the fluid
δ is the fluid density
and g is the gravity acceleration.
We can write the following equation :
[tex]W(WoodenBall)-E=5.00N[/tex]
18.0 N - V.δ(water).g = 5.00 N
[tex]13N=0.5[V(WoodenBall)]1000\frac{kg}{m^{3}}.10\frac{m}{s^{2}}[/tex]
Let's remember that
[tex]1N=1\frac{kg.m}{s^{2}}[/tex]
Therefore,
[tex]13N=0.5[V(WoodenBall)].10000\frac{N}{m^{3}}[/tex]
[tex]V(WoodenBall)=2.6(10^{-3})m^{3}[/tex]
And that is the answer for c)
For a) we write
[tex]SpringScaleReading=W(WoodenBall)-E[/tex]
Spring scale reading = 18 N - 0.2 [V(Wooden ball)] . δ(water). g
[tex]SpringScaleReading=18N-0.2[2.6(10^{-3})m^{3}].1000\frac{kg}{m^{3}}.10\frac{m}{s^{2}}[/tex]
[tex]SpringScaleReading=18N-5.2N=12.8N[/tex]
For a) The spring scale will read 12.8 N
b) [tex]W(WoodenBall)=m(WoodenBall).g[/tex]
Where m(Wooden Ball) is the mass of the wooden ball.
[tex]18N=m(WoodenBall).10\frac{m}{s^{2}}[/tex]
[tex]m(WoodenBall)=1.8kg[/tex]
δ(Wooden ball) = m(Wooden ball) / V(Wooden ball)
δ(Wooden ball) = 1.8 kg / [tex]2.6(10^{-3})m^{3}[/tex]
δ(Wooden ball) = [tex]692.308 \frac{kg}{m^{3}}[/tex]