Answer:
Diffusion time is 7.42 h
Solution:
As per the question:
Temperature, T = [tex]1100^{\circ}C[/tex]
Surface concentration of arsenic, [tex]C_{S} = 5.0\times 10^{18}\ atoms/cm^{3}[/tex]
Surface concentration below Silicon surface, [tex]C_{x} = 1.5\times 10^{16}\ atoms/cm^{3}[/tex]
D = [tex]3.0\times 10^{- 14}\ cm^{2}/s[/tex]
x = [tex]1.2\mu m = 1.2\times 10^{- 4}\ cm[/tex]
Initial concentration at t = 0, [tex]C_{o} = 0[/tex]
Now, by using Flick's second eqn:
[tex]\frac{C_{S} - C_{x}}{C_{x} - C_{o}} = erf(\frac{x}{\sqrt{Dt}})[/tex]
Thus by putting appropriate values:
[tex]\frac{5.0\times 10^{18} - 1.5\times 10^{16}}{5.0\times 10^{18}} = erf(\frac{1.2\times 10^{- 4}}{2\sqrt{3.0\times 10^{- 14}t}})[/tex]
[tex]0.997 = erf(\frac{364.4}{\sqrt{t}})[/tex] (1)
Now,
[tex]erf(z) = 0.997[/tex]
Now, from error function values tabulation:
For z = 2.0, erf(z) = 0.998
For z = 2.2, erf(z) = 0.995
Now,
With the help of linear interpolation method:
[tex]\frac{z - 2}{2.2 - 2.0} = \frac{0.997 - 0.995}{0.998 - 0.995}[/tex]
z = 2.12
Now, using eqn (1) and above value:
[tex]\frac{364.4}{\sqrt{t}} = 2.12[/tex]
[tex]t = (\frac{364.4}{2.12})^{2}[/tex] = 26700 s
t = [tex]\frac{26700}{3600} = 7.42\ h[/tex]