Answer:
29\°c
Explanation:
We need to define a couple of properties
[tex]T_f = 305KP= 1atm\\v=16.27*10^{-6}m^2/s\\k=0.02658W/mK\\Pr=0.707[/tex]
For this problem I took Steady-state conditions with isothermal temperature in [tex]T_s[/tex]
As well as a flow turbulent over the wall and negligible heat transfer into the building.
We start making a energy balance on the wall,
[tex]E'_{in}-E'_{out}=0[/tex]
[tex]-q'_{cv}+(\alpha_S G_S-E_S)L=0[/tex]
[tex]-\bar{h}_L L(T_s-T_{\infty})+(\alpha_S G_S - \epsilon \sigma T_s^4)L = 0[/tex]
Again, assuming fully turbulent flow over the leng of the wall,
[tex]\bar{Nu}_L = \frac{\bar{h}_L}{k} = 0.037 Re_L^{4/4} Pr^{1/3}[/tex]
[tex]Re_L = u_{\infty}\frac{L}{v} = 4.47*\frac{10}{16.27*10^{-6}}= 2.748*10^6[/tex]
[tex]\bar{h}_L = (0.02658/10)0.037(2.748*10^6)^{4/5}(0.707)^{1/3}=12-4W/m^K[/tex]
Substituting to fin [tex]T_s,[/tex]
[tex]-12.4W/m^2*10m[T_s-(32.2+273)]K+[1*400W/m^2-0.93*5.67*10^{-8}W/m^2.K^4T_s^4]*10m=0[/tex]
[tex]T_s=302.2K=29\°c[/tex]