Answer:
Given that
V= 0.06 m³
Cv= 2.5 R= 5/2 R
T₁=500 K
P₁=1 bar
Heat addition = 15000 J
We know that heat addition at constant volume process ( rigid vessel ) given as
Q = n Cv ΔT
We know that
P V = n R T
n=PV/RT
n= (100 x 0.06)(500 x 8.314)
n=1.443 mol
So
Q = n Cv ΔT
15000 = 1.433 x 2.5 x 8.314 ( T₂-500)
T₂=1000.12 K
We know that at constant volume process
P₂/P₁=T₂/T₁
P₂/1 = 1000.21/500
P₂= 2 bar
Entropy change given as
[tex]\Delta S=nC_P\ln \dfrac{T_2}{T_1}-nR\ln \dfrac{P_2}{P_1}[/tex]
Cp-Cv= R
Cp=7/2 R
Now by putting the values
[tex]\Delta S=nC_P\ln \dfrac{T_2}{T_1}-nR\ln \dfrac{P_2}{P_1}[/tex]
[tex]\Delta S=1.443\times 3.5\times 8.314\ln \dfrac{1000.21}{500}-1.443\times 8.314\ln \dfrac{2}{1}[/tex]
a)ΔS= 20.79 J/K
b)
If the process is adiabatic it means that heat transfer is zero.
So
ΔS= 20.79 J/K
We know that
[tex]\Delta S_{univ}=\Delta S_{syatem}+\Delta S_{surr}[/tex]
Process is adiabatic
[tex]\Delta S_{surr}=0[/tex]
[tex]\Delta S_{univ}=\Delta S_{syatem}+\Delta S_{surr}[/tex]
[tex]\Delta S_{univ}= 20.79 +0[/tex]
[tex]\Delta S_{univ}= 20.79 [/tex]