Answer
given,
mass of the jet airplane = 13500 kg
Force on the plane = 35700 N due north
force from wind = 15300 N in direction 80.0° south of west.
Force = [tex]35700 \vec{j} N[/tex]
force by wind = [tex]15300(-cos \theta \vec{i}-sin \theta \vec{j})[/tex] N
= [tex]15300(-cos 80^0 \vec{i}-sin 80^0 \vec{j})[/tex] N
net force on the jet airplane(ma)
[tex]m a = 35700 \vec{j} + 15300(-cos 80^0 \vec{i}-sin 80^0 \vec{j})[/tex]
[tex]\vec{a} = \dfrac{35700}{13500} \vec{j} + \dfrac{15300}{13500}(-cos 80^0 \vec{i}-sin 80^0 \vec{j})[/tex]
[tex]\vec{a} = 2.64\vec{j} -0.197 \vec{i} - 1.116 sin 80^0 \vec{j})[/tex]
[tex]\vec{a} = -0.197 \vec{i} + 1.524 \vec{j}[/tex]
[tex]a = \sqrt{-0.197^2+1.524^2}[/tex]
a = 1.54 m/s²
[tex]\theta = tan^{-1}(\dfrac{-1.524}{0.197})[/tex]
[tex]\theta = -82.63^0[/tex]