Respuesta :
Answer:
Explanation:
given,
mass of block = 3 kg
spring constant k = 500 N/m
kinetic friction coefficient µk = 0.6
speed of block = 5 m/s
F = µk N
F = 0.6 x 3 x 9.8
F = 17.64 N
using energy conservation
[tex]\dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2+Fx[/tex]
[tex]\dfrac{1}{2}\times 3 \times 5^2=\dfrac{1}{2}\times 500 \times x^2+17.64\times x[/tex]
250 x² + 17.64 x - 37.5 = 0
on solving
x = 0.354 m
graph is attached below

Explanation:
Given that,
Mass of block = 3 kg
Spring constant k=500 N/m
Friction coefficient = 0.6
Speed = 5 m/s
(a). We need to calculate the maximum compression of the spring
Using work energy theorem
[tex]\dfrac{1}{2}mv^2+\mu\times mgx=\dfrac{1}{2}kx^2[/tex]
Put the value into the formula
[tex]\dfrac{1}{2}\times3\times(5)^2+0.6\times3\times9.8\times x=\dfrac{1}{2}\times500\times x^2[/tex]
[tex]250x^2-17.64x-37.5=0[/tex]
[tex]x=-0.354\ m[/tex]
Negative sign shows the compression.
The maximum compression of the spring is 0.354 m.
(b). We need to draw the bar diagram
We need to calculate the initial energy
[tex]E_{i}=\dfrac{1}{2}kx^2[/tex]
Put the value into the formula
[tex]E_{i}=\dfrac{1}{2}\times500\times(0.354)^2[/tex]
[tex]E_{i}=31.329\ J[/tex]
We need to calculate the final energy
Using formula of final energy
[tex]E_{f}=\dfrac{1}{2}mv^2[/tex]
[tex]E_{f}=\dfrac{1}{2}\times3\times(5)^2[/tex]
[tex]E_{f}=37.5\ J[/tex]
We need to calculate the work
Using formula of work
[tex]W=Fx[/tex]
[tex]W=\mu mg\times x[/tex]
Put the value into the formula
[tex]W=0.6\times3\times9.8\times(-0.354)[/tex]
[tex]W=-6.244\ J[/tex]
Hence, This is the required solution.
