1.
Answer:
Part a)
[tex]\rho = 1.35 \times 10^{-5} [/tex]
Part b)
[tex]\alpha = 1.12 \times 10^{-3}[/tex]
Explanation:
Part a)
Length of the rod is 1.60 m
diameter = 0.550 cm
now if the current in the ammeter is given as
[tex]i = 18.7 A[/tex]
V = 17.0 volts
now we will have
[tex]V = I R[/tex]
[tex]17.0 = 18.7 R[/tex]
R = 0.91 ohm
now we know that
[tex]R = \rho \frac{L}{A}[/tex]
[tex]0.91 = \rho \frac{1.60}{\pi(0.275\times 10^{-2})^2}[/tex]
[tex]\rho = 1.35 \times 10^{-5} [/tex]
Part b)
Now at higher temperature we have
[tex]V = I R[/tex]
[tex]17.0 = 17.3 R[/tex]
R = 0.98 ohm
now we know that
[tex]R = \rho \frac{L}{A}[/tex]
[tex]0.98 = \rho' \frac{1.60}{\pi(0.275\times 10^{-2})^2}[/tex]
[tex]\rho' = 1.46 \times 10^{-5} [/tex]
so we will have
[tex]\rho' = \rho(1 + \alpha \Delta T)[/tex]
[tex]1.46 \times 10^{-5} = 1.35 \times 10^{-5}(1 + \alpha (92 - 20))[/tex]
[tex]\alpha = 1.12 \times 10^{-3}[/tex]
2.
Answer:
Part a)
[tex]i = 1.55 A[/tex]
Part b)
[tex]v_d = 1.4 \times 10^{-4} m/s[/tex]
Explanation:
Part a)
As we know that current density is defined as
[tex]j = \frac{i}{A}[/tex]
now we have
[tex]i = jA[/tex]
Now we have
[tex]j = 1.90 \times 10^6 A/m^2[/tex]
[tex]A = \pi(\frac{1.02 \times 10^{-3}}{2})^2[/tex]
so we will have
[tex]i = 1.55 A[/tex]
Part b)
now we have
[tex]j = nev_d[/tex]
so we have
[tex]n = 8.5 \times 10^{28}[/tex]
[tex]e = 1.6 \times 10^{-19} C[/tex]
so we have
[tex]1.90 \times 10^6 = (8.5 \times 10^{28})(1.6 \times 10^{-19})v_d[/tex]
[tex]v_d = 1.4 \times 10^{-4} m/s[/tex]