Answer:
[tex]T_f=5854.76[/tex] °C
Explanation:
Given:
mass of hiker, m= 63 kg
height to be climbed, h= 828 m
energy produced by an energy bar, [tex]E= 1.10\times 10^6 J[/tex]
heat capacity of the hiker, [tex]c=75.3 J.mol^{-1}.K^{-1}= 4.184 J.kg^{-1}.K^{-1}[/tex]
initial body temperature of hiker, [tex]T_i=36.6 \degree C[/tex]
The efficiency of converting the energy content of the bars into the work of climbing is 25%, the remaining 75% of the energy released through metabolism is heat released to her body.
We find the energy required for climbing 828 m height:
W=m.g.h
[tex]W=63\times 9.8\times 828[/tex]
W= 511207.2 J
∵Hike eats 2 energy bars= [tex]2\times 1.1\times 10^{6} J[/tex]
Energy produced[tex]= 2.2\times 10^{6} J[/tex]
Now, according to her efficiency:
Total energy required for producing the work of W= 511207.2 J which is required to climb the given height will be (say, E):
[tex]25\% of E= 511207.2[/tex]
[tex]\Rightarrow E= 511207.2\times \frac{100}{25}[/tex]
[tex]E=2044828.8 J[/tex]
&
Amount of total energy (E) converted into heat(Q) is:
[tex]Q=2044828.8-511207.2\\Q=1533621.6J[/tex]
As we know that:
heat, [tex]Q=m.c. (T_f-T_i)[/tex].................(1)
where:
[tex]T_f[/tex] is the final temperature
Putting respective values in the eq. (1)
[tex]1533621.6= 63\times 4.184\times (T_f-36.6)[/tex]
[tex](T_f-36.6)\approx 5818.16[/tex]
[tex]T_f\approx 5854.76[/tex] °C